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Electromagnetic Properties of Shielded
Ring Lines and Attenuation of the

Fundamental Dipolar Mode

CLAUDE FRAY AND ALBERT PAPIERNIK

.4bstraet-Tlds paper presents a theoretical analysis of the ektronmg-

netic properties of the shielded ring fine and provides expressions for field

components, stored energy, and power flow. The dispersion relation ob

tained by eqnadng electric and magnetic stored energies is discussed. The

shielded ring line is shown to have a forrdamental dipobir hybrid mode.

‘fEe attenuation of this mode is evafnated. Measurements have corrobo-

rated the theoretical vafnes.

I. INTRODUCTION

T HE OPEN RING LINE, operating in the funda-

mental dipolar hybrid mode, is a low-loss line [ 1]–[3]

with significant extension of the fields around the line.

Potential uses for the open line include railway traffic

control and obstacle detection, and telecommunication

applications when the line is shielded. In a previous study

[4] of the shielded ring line in which the periodicity was

neglected, the theoretical results did not agree well with

experimental results when the period becomes greater

than the ring radius. In this paper, we present more

accurate results that take into account the periodicity. We

assumed that the rings are infinitely thin, perfectly con-

ducting tapes (Fig. 1) and postulate a current distribution

on the rings. The field is expanded in eigenfunctions of

the metallic cross section. A dispersion relation is ob-

tained by equating magnetic and electric stored energies.

Measurements have corroborated the calculated disper-

sion characteristics and attenuation of the fundamental

dipolar hybrid mode.

II. THEORETICAL FORMULATION

~. Surface Current Density

To determine the surface current density, we assume

that the rings are infinitely thin, perfectly conducting

tapes with a width small compared with both the period

and the wavelength (see Fig. 1). Under these conditions, it

is permissible to neglect the longitudinal (z-directed) cur-

rent. The field is produced only by the azimuthal current

density as in the case of the open ring line [5]. With an .@t
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factor omitted, we have

J= $ cos n88(r – a)uo ~ D~e ‘Jfi”z
~.—~

{
with ‘m= fi+ 2mT/H

D~=Jo(mmv/H)
(1)

where I is the total current on a ring, n is a positive

integer which characterizes the dependence on 9, ~H is

the phase shift between adjacent rings, ~~ is the phase

constant of the mth harmonic, and D~ are the Fourier

coefficients. The Dn depend on the choice of the current

distribution across the ring width. As in the case of the

open ring line, we shall postulate that the current distribu-

tion is the same as that of an isolated narrow thin ring [6].

B. Field Expansion into a Cylindrical Volume ~7]

This expansion in eigenfunctions @$q(r,0), +,q(r, 0) of

the circles of radius b is

E= ~ ~ { a.~v%~ + b,, + b,,(~. X V$,,) + %g%~~.}
s q

H= 2 ~ { %,(%x v%,)+ &qvAq + ‘Ys,4Lq~z}
(2)

3

where the expressions of the eigenfunctions and of the

corresponding eigenvalues p~q and v~qare

u
~~q=:, U,q qth root of J,

v
v~q=~,

b
o~qqth root of J,’ (3)

tithsso,l,2,3,.. .,q=l ,2,3,..., and~=l forseoand

$=2 for s#O. These eigenfunctions are normalized

Jj’:qds=p-$ds=l.
The coefficients a~q(z), b~q(z), C,q(z), a,q(z), ~,q(z), and

y,q(z) are given by differential equations obtained from
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Fig. 1. Schematic representation of the shielded
radius, H period, w ring width, lr shield radius).

ring line (a ring

expanding Maxwell’s equations in eigenfunctions and

considering the boundary conditions at r = b. These are

d2a,q
—.

dz2
+(k’-p~q)a,q= <~J.vc#,q dfi

.JW& s

d2(i

) “-; $&%%qdS‘q + (k2–pj’q a,q–——
dz 2 Psq

P,:
c~q= T a*q Y,q= ~ b,,

JLLX jcdp

d2b
‘q+ (k2- v:q)b,q= ‘~~J (u. x v+,,) ds——

dz2 s

d2j3

2, -JqJ”(uzwqq)ds‘q +(k2– ‘sq &- V2 & s——

dz 2 w

where k = u(qL) 112= U/ c denotes the wavenumber of

medium, ~ the permittivity, p the permeability, and c

light velocity. If we introduce the expressions (3) for

eigenfunctions into the differential equation (4), we easily

obtain the coefficients, and then the field components are

dec[uced from (2). These components are expressed as a

double expansion: one in space harmonics and one in

Fourier--Bessel or Dini series. The longitudinal compo-

nen ts are given in Appendix A. After lengthy calculations,

we found that the different series that appear in the

component expressions can be summed (see Appendix B).

After rearranging we obtain

(4)

the

the

the

where

a:= fi:-k’

G.~(a, r)= {IH(ana)l~(anr) K~(aMb)/I~(a~b)} - Fn~(a, r)

ti.~(a,r) = {Z~(a~a)I~(anr) K~(a~b)/Z~(a~b)} – Fm~(a, r).

(6)

F.~(a, r) is a function already introduced for the open ring
line study [5]

~n(~m.)~n(~mr),
Fnm(a, r)=

r <a

~n(~ma)~n(~mr),
(7)

r>.

and Z = ~ is the impedance of the medium.

C. Component A na~sis

The modes of the shielded ring line are of the hylbrid

type, except for the special case of circular symmetry

(n= O) and cutoff (~= O). Indeed, for n= O, or ~= 0, the

components in (5) are reduced to three components E@,

HZ, H,, or E,, Efl, Hz, respectively, which correspond to

the TEOg modes over the passband or to the TE~~ mc)des

at cutoff. The TMOq modes over the passbanld and the

TM~~ modes at cutoff can also propagate in the shielded

ring line but do not appear in the field component expres-

sions in (5) because there is no coupling to the ring

current (i.e., EO= Hz = O on the rings). When the shield

radius b tends to infinity, the functions G~,~(a, r) and

H.M(., r) (6) tend to the function l~~~(a, r) (7), and the

components (5) tend to those of the open ring line [5].

Zz
— n sin rd ~ D#~G~~(a,r)e-JD”’

‘z=–kH ~..~

(5’)
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III. ENERGY AND DISPERSION RELATIONS

A. Stored Energy Per Unit Length and Power Flow

The expressions for these quantities can be determined

from the components after summation of the Fourier–

Bessel and Dini series (5) or before summation (Appendix

A). We have selected the second method because it allows

the use of orthogonality properties of the eigenfunctions.

After re~ranging, the final expressions of stored magnetic

energy WM, stored electric energy FE, and power flow P

can be written

(8)

(9)

B. Dispersion Relation and Group Veloci@

The dispersion relation is obtained by specifying that

FM= ~~ [8]

The group velocity in a periodic structure is equal to the

energy velocity [8] and is given by

(11)

IV. MODES OF THE SHIELDED RING LINE

The solution of the dispersion relation (10) gives the

dispersion curves. In order to reduce the computation

time, we have chosen to integrate (1 1), which can be

written as

~ = F(x,y) where x= ~H, y = kH and F(x,y) = P/c~.

This first-order differential equation is solved numerically

using a fourth-order Runge–Kutta integration process

with initial condition y(xO) =yO obtained by solving the

dispersion relation for XO= O. The method provides us

with the dispersion curves, stored energy, power flow, and

group velocity. Dispersion curves of a particular shielded

ring line are illustrated in Fig. 2. Limit values, obtained

from the fundamental term of the dispersion relation (10),

are represented in the figure by double arrows. These

values correspond to the nonperiodic theory [4] in which

the ring line is assumed to be an ideal cylinder with

conduction in the ring direction only (space harmonics

neglected). Two types of modes appear: the circular sym-

metry and the hybrid modes.

The circular~ symmetric modes comprise: 1) the TEO~

modes, analogous to those of smooth guides of diameter

2a and those of the coaxial guide (a, b) (TEOq(a, b) on the

figure) perturbed by the rings; 2) the TM04 modes

(TMO1, TM02 on the figure) of the smooth guide of diame-

ter 2b unperturbed by the rings.

The EHnq hybrid modes (qth mode of n-fold symmetry

in 19encountered in a scale of increasing frequencies) may

be divided into two groups: 1) the EH.I modes (EHI ~,

EH21, EH31, EH41 on the figure), the cutoff of which is

TE~l coaxial for any geometrical parameters, can be

termed “fast” (ti/~ > c) or “slow” (a//3 <c) according to

the frequency; 2) the EH.~(q > 1) modes (EH12, EH13,

EH22, EH23 on the figure), the cutoff of which is TE or

TM according to the values of the geometrical parame-

ters, are always “fast.” The interchange of cutoff

frequencies of two adjacents EH.~(g > 1) modes are ex-

plained by the coupling between modes of the same 8

symmetry according to Pierce and Tien theory [9]. When

the dispersion curves of two modes EH~q and EHHq+ ,(q >

1) are almost coincident, the characteristic of the EH~q

mode is distorted having a minimum beyond cutoff in the

fast-wave domain (for example the EH22 mode on the

figure).

An experimental verification of the dispersion curves

has been made which corroborates the theoretical results

(10)
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Fig. 2. Theoretical dispersion curves for the first modes (H= 2.5 cm,
2a= 5 cm, 2b = 10 cm, w= 0.5 cm). The double arrows are obtained by
neglecting the guide periodicity.
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Fig. 3. Dispersion curve of the EH,, mode as the period H increases
from 1 1.o 10 cm with 2b = 10 cm, 2a =5 cm, w =0.5 cm. —-—point
where the dispersion curve cuts the straight up= c.

{ 10}. Tc) measure the dispersion curves of the first few

modes, a resonant cavity was formed by placing shorting

end plates at symmetry planes halfway between the rings.

Two teflon supports were holding up the rings. The dis-

crepanc~ between theoretical and experimental dispersion
curves is less than 1 and 1.5 percent for the EH1, and

EH21 modes, respectively. It can be explained almost

entirely by the spurious effect of the dielectric supports

which tend to lower the resonant frequencies.

Fig. 3 exhibits the very significant role of the guide

period on the dispersion curve. This result shows that the
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Fig. 4. Dispersion curve of the EH,, mode as the ring radius a de-
creases with H= 2.5 cm, 2b = 10cm, w=0.5 Cm,

new theory presented here, which takes into aecoun t the

guide periodicity, is needded for accuracy. The values of
the period H, the ring radius a, and the shield radius b

influence considerably the dispersion curves of the ElE3n~
modes, but the ring width w has little influence: the

passband decreases when the period increases (Fig. 3)

while it extends toward the high frequencies m the ring

radius decreases (Fig. 4) and toward the low frequencies



338 IREE TRANSACTIONS ON MICROWAVE THSORY AND T5C~Q~S, VOL. M’IT-27, NO. 4, AP~ 1979

rkH

t
-v EC

P

Fig. 5. Dispersion curve of the EH1, mode as the shield radius in-
creases with H= 2.5 cm, 2a= 2 cm w= 0.5 cm.

as the shield radius increases (Fig. 5). When b tends to
infinity, the shielded ring line tends to coincide with the

open ring line, and the EH~, modes become the same as

those of the open ring line. The fundamental mode of the

shielded ring line is, therefore, a dipolar hybrid mode, as

is the case for the unshielded line.

V. A~ENUATION OF THE FUNDAMENTAL DIPOLAR

MODE EHI,

The following relation gives the longitudinal attenua-

tion constant where P, P,, P, are, respectively, the power

flow (9), the ohmic losses per unit axial length on the rings

and on the shield:

P+P
a= ~8.68 I@ dB/km (12)

with

(p: permeability and u: conductivity)

I
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Fig. 6. Attenuation variation as the ring radius a decreases with H=
2.5 cm, 2b = 10 cm, w=O.5 cm.

current distribution is a constant on both sides of the ring

surfaces. The attenuation of the EH ~~ mode has been

investigated with the help of the relation (12), and is

determined chiefly by the ratio b/a. The period and ring

width have a negligible influence when w/H is small.

When b/a increases, either with b a constant or with a a

constant, the attenuation becomes smaller and smaller

over a broader and broader frequency band toward high

frequencies (Fig. 6) with b kept a constant or toward IIow
frequencies (Fig. 7) with a kept a constant. Thus the

greater the distance from the rings to the shield, the

smaller the attenuation of the EH,, mode.

Waveguide attenuations are measured by the cavity

method. The attenuation coefficient is related to the Q

factor QO due to the shield and ring losses through the

formula: a = W/20gQ0 where Ogdenotes the group velocity

of mode causing resonance. QO is deduced from the

measured Q factor of the cavity by eliminating losses on

the end plates of the cavity. It is measured for several

values of cavity length at the same frequency by the

transmission method with negligible coupling.

This simple expression for P, represents an estimate of

—.—

Fig. 8 shows the theoretical and experimental attenua-

te ohmic losses. It is based on the assumption that the tion of the dipolar mode for an aluminium alloy structure
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Fig. 7. Attenuation variation as the shield radius b increases with
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Fig. 8. Experimental and theoretical attenuation for the EH1, mode
with H=2.5 cm, 2b=10 cm, 2a=l.3 cm (b/a=O.7k w=O.5 cm, and., .-
ring thickness is” 0.05 cm.

(AU4G) with b/a= 7.7. The rings are supported by a

2-mm-thick teflon pipe. The experimental curve is slightly
shifted compared to the theoretical curve. This dis-

crepancy may be explained by the effect of the teflon pipe
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that holds the ring8 and the experimental errors in the

determination of the Q factor. The measured attenuation

is less than 20 dB/km over a bandwidth of 1 GHz, and

would be reduced to about 12 dB/km if the aluminium

alloy were replaced by copper (Fig. 8).

VI. CONCLUSIONS

Our theoretical analysis of the shielded ring line was

based on a postulated current distribution on the rings. It

provides detailed knowledge of the properties of that

guiding structure and analytical expressions for the field

and energy relations. We found modes analogous to those

of the disk-loaded waveguide or of the shielded dielectric

line and, in addition, modes similar to those of the coaxial

guide. The latter are circularly symmetric T%* modes ancl
hybrid modes with cutoff close to that of TE~~ coaxial

modes. EH~ * modes are the only ones that can propagate

as slow waves. The fundamental mode of this periodic

structure is the EHI ~ mode, whereas that of the disk-

loaded waveguide is the TN&l mode. These EH~l modes

give those of the open ring line when the shield radius

tends to infinity. If the open ring line operates in this

dipolar hybrid mode as a low-loss line (the attenuation

measured with an aluminum alloy structure being less

than 5 dB/km [1], this property disappears partly when

the line is shielded (about 12 dB/km

ture).

APPENDIX A

for a copper strut..

–~nsinntl ~ 2
‘z – kH ~.—*

“2
Dm&Jn(u.qa/b) J ~ ~ ~-jflm.

()q= I (kg+ ~:b2)J:+ ](uW) n ‘q b

Hz=–~acosn6 ~ 2
~..~

The definition of the Fourier–Bessel and Dini series is

given in [11] and [12]: Fourier–Bessel series

-fX.Y)= 92, LqJn(un#)

and Dini series

tin(y)= i MqJri~n#)

q=l

with
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fiPENDIX ~

-,, . . ----
q=l tt;q(zt:q+ p2).T;+Jzlnq) p2Ian/2~{Y-n–Yn} +ln(w){~.(pY)Kn( p)/~n(p)– Kn(py)}, o<a<y<ll

V;quf&—
9=1 fi?q-n2

co

Jn(%q~)Jn(%qx) ( }~~{an+a-n}+In(px) In(pa)-%#-Kn(pa) , ()<x<a<l
n.—

2)2)P2 an
0;9( ZI;9 + /J J. (vnq

{

y-{x”+x-”}+ In(w)~.
}

Kn( W) 1.( w), ()<a<x<l
n

{
“ L(luz)wa)+$– 1+{In(pa)K;(pzz)+ I;(pa)Kn(w)} .

n
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A General Reciprocity Theorem

PAUL R. McISAAC, MEMBER, IEEE

Abstract—A general reciprocity theorem based on the Onsager relations

is developed which appliea to afl cansai and finear medi~ inchrdhrg those

whose ac susceptihifitiea depend on an applied dc magnetic field and on the

dc drift velocity of charge carriers. Applications are made to the scattering

matrix for microwave junctions and to the mode orthogorrality relations for

uniform and periodic wavegoides.
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I. INTRODUCTION

o NE OF THE BASIC theorems of electromagnetic

theory is the reciprocity theorem. There has been a
long history of contributions to its development [1]-[6]. It

is the purpose of this contribution to extend the range of

applicability of the reciprocity theorem and to provide a

physical basis for it through the Onsager relations. The

requirements are only that the media in the region under

consideration be causal and linear; they may be either

passive or active. In particular, media whose ac suscept-
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