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Electromagnetic Properties of Shielded
Ring Lines and Attenuation of the

Fundamental

Dipolar Mode

CLAUDE FRAY anp ALBERT PAPIERNIK

Abstract—This paper presents a theoretical analysis of the electromag-
netic properties of the shielded ring line and provides expressions for field
components, stored energy, and power flow. The dispersion relation ob-
tained by equating electric and magnetic stored energies is discussed. The
shielded ring line is shown to have a fundamental dipolar hybrid mode.
The attenuation of this mode is evaluated. Measurements have correbo-
rated the theoretical values.

I. INTRODUCTION

HE OPEN RING LINE, operating in the funda-

mental dipolar hybrid mode, is a low-loss line [1]-[3]
with significant extension of the fields around the line.
Potential uses for the open line include railway traffic
control and obstacle detection, and telecommunication
applications when the line is shielded. In a previous study
[4] of the shielded ring line in which the periodicity was
neglected, the theoretical results did not agree well with
experimental results when the period becomes greater
than the ring radius. In this paper, we present more
accurate results that take into account the periodicity. We
assumed that the rings are infinitely thin, perfectly con-
ducting tapes (Fig. 1) and postulate a current distribution
on the rings. The field is expanded in eigenfunctions of
the metallic cross section. A dispersion relation is ob-
tained by equating magnetic and electric stored energies.
Measurements have corroborated the calculated disper-
sion characteristics and attenuation of the fundamental
dipolar hybrid mode.

II. THEORETICAL FORMULATION

A. Surface Current Density

To determine the surface current density, we assume
that the rings are infinitely thin, perfectly conducting
tapes with a width small compared with both the period
and the wavelength (see Fig. 1). Under these conditions, it
is permissible to neglect the longitudinal (z-directed) cur-
rent. The field is produced only by the azimuthal current
density as in the case of the open ring line [5]. With an ¢/**
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factor omitted, we have

J= % cos 8(r—a)u, >, D, e P

m=—o0

B,=B+2mn/H

D, =Jy(mmw/H) M

where I is the total current on a ring, » is a positive
integer which characterizes the dependance on #, BH is
the phase shift between adjacent rings, 8,, is the phase
constant of the mth harmonic, and D,, are the Fourier
coefficients. The D,, depend on the choice of the current
distribution across the ring width. As in the case of the
open ring line, we shall postulate that the current distribu-
tion is the same as that of an isolated narrow thin ring [6].

with {

B. Field Expansion into a Cylindrical Volume [7]

This expansion in eigenfunctions ¢ (7,0), ¥,(r.8) of
the circles of radius b is

E= 2 2 {asqv¢sq + bsq + bsq(uz X V¢sq) + qu¢squz}
s 4

2

where the expressions of the eigenfunctions and of the
corresponding eigenvalues y,, and »,, are

1/2 .
0= ity ) 20

H= 2 ; {asq(uz X V¢sq) + BsqV‘Psq + ‘qu‘l/squz}

U,
M= U, qth root of J
v = vsq(g/ﬂ)l/z (D 1){ sin s }
sq b(qu—sz)Js(Usq) S\ b )\ cos s
)
psq = —f s vsq qth root of J; (3)

with s=0,1,2,3,---,¢=1,2,3,-- -, and £=1 for s=0 and
§=2 for s#0. These eigenfunctions are normalized

fsqsfq dS=fS 2 dS=1.

The coefficients asq(z), bsq(z), csq(z)', o, (2), B, (2), and
Y5,(2) are given by differential equations obtained from
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Fig. 1.

Schematic representation of the shielded ring line (@ ring

radius, H period, w ring width, b shield radius).

expanding Maxwell’s equations in eigenfunctions and
considering the boundary conditions at r= 5. These are

dztfl ,le
2 +(k?—p2)a,, = J-Vo,, dS
d:? (= pi)a Jwepl fs P
d’a, d
— (R p)a,=—— fS J-Vo,, dS
2 2
_ :u‘sq _ Vsq
sq Jwe Asq Ysg = Joop bsq
D | (k2= 25, =12 vy,,) d
dz ,2 ( —VS‘I) quTfJ'(uzX lxbsq) A)
i Vig VS
—’ﬁ+( v2) 14 J(u,xVy, ) dS (4
d 2 qu 2q dZ»/:g U, \l{vq ( )

where k=w(ep)'/*=w/c denotes the wavenumber of the
medium. e the permittivity, u the permeability, and ¢ the
light velocity. If we introduce the expressions (3) for the
eigenfunctions into the differential equation (4), we easily
obtain the coefficients, and then the field components are
deduced from (2). These components are expressed as a
double expansion: one in space harmonics and one in
Fourier--Bessel or Dini series. The longitudinal compo-
nents are given in Appendix A. After lengthy calculations,
we found that the different series that appear in the
cornponent expressions can be summed (see Appendix B).
After rearranging we obtain
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i ’b
where
e

Gymla,r)={1(a,a)1,(a,r)K,(a,0)/1,(a,0)} = F,,.(a,r)

H,.(a,r)={L(a,a)(a,") K (,b)/ I ;(a,b)} — F,,(a,r).
(6)

F,,(a,r) is a function already introduced for the open ring
line study [5]

F. (ar)= K,(a,, )] (a,r), r<a

I(a,a)K,(a,r), r>a
and Z=V u/e is the impedance of the medium.

M

C. Component Analysis

The modes of the shielded ring line are of the hybrid
type, except for the special case of circular symmetry
(n=0) and cutoff (B8=0). Indeed, for n=0, or =0, the
components in (5) are reduced to three components E,,
H, H, or E, E, H, respectively, which correspond to
the TE,, modes over the passband or to the TE,, modes
at cutoff. The TM,, modes over the passband and the
TM,,, modes at cutoff can also propagate in the shielded
ring line but do not appear in the field component expres-
sions in (5) because there is no coupling to the ring
current (i.e., Ey=H, =0 on the rings). When the shield
radius b tends to infinity, the functions G, (a,r) and

H, (a,r) (6) tend to the function F, (a,r) (7), and the
components (5) tend to those of the open ring line [3].

E =— kZ}IIn sin nomz D,B,,G,,(a,r)e /P
E = *j%n sin nﬂmzw 2 { B2 (a r) 7—‘: 3Hn,§£(1a,r) }e—jﬂml
E,= ‘j-kg}i] cos ngmioo f_g { _n; 26 (a, )+ k% ZHE;:;?J) }e_jﬂ,,.z
H_,=a% cos nOmeDmg_H"_'g((;’_rlevﬁmz
H’=jé o8 n()miw Dmf_g { n72 Gnm(a,,)ﬂ?fH%_s::’) }g—/ﬂnz
Hy=—gnsinn 3 b, e R )
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III. ENERGY AND DISPERSION RELATIONS

A. Stored Energy Per Unit Length and Power Flow

The expressions for these quantities can be determined
from the components after summation of the Fourier-
Bessel and Dini series (5) or before summation (Appendix
A). We have selected the second method because it allows
the use of orthogonality properties of the eigenfunctions.
After rearranging, the final expressions of stored magnetic
energy W,,, stored electric energy Wy, and power flow P
can be written

CWM T e D"21 In2
= — 1\ BLG, . (a,r
ZI*  4H? miw & { o Gon(@:7)
+'32a282Hnm(a’r) +I’l2ﬁ2 Inz(‘xma) _aaGnm(a’a)
" daor "\ 2IX(a,,b) da

__a2 k2a2 1+ n2 I,:2(ama)
" a2a® | 2I'%(a,,b)

n* \dH, (a,a)
+a(1+ a,f,bz) %

cWy a 0 p2 , 2
= -m n -m k2_ 2 G a,a
ZrP 4H e & [ o (K= az)Gp(a,0)
+ kZaZM + nZBZ Inz(ama) —a aGnm(a, (1)
dadr ™ 2I%(a,,b) oa

"*(12 k2a2 1+ n2 I,:z(ama)
" ala? | 21'%(a,,b)

n* \8H, .(a,a)
+a(1+ a,f,bz) 3a

P @ &

(®)

BZ
= 28m |22
ZIZ - 2kH2 m———z—oo Dm lX4 n k Gnm(a,a)

9°H,,(a,a)
daodr

I(a,a) _ 3G,,(a,q)

+k%a? a
‘ 203(a,b) 9a

+ n%j{

2\ I'(a,a
_kZaZa’%l 1+ n n (am )
ata? ) 21" a,,b)

n? 8H,,m(a,a)
+a(1+ afnbz) % .

B. Dispersion Relation and Group Velocity

©)

The dispersion relation is obtained by specifying that

Wy =Wg [8]

2Pm 12
i nt— L a,a)

m

I.(a,b)

2 [ LB Ki(ayh)  Ky(aya)
2 b { { 7,()
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The group velocity in a periodic structure is equal to the
energy velocity [8] and is given by

(11)

IV. MobDEs oF THE SHIELDED RING LINE

The solution of the dispersion relation (10) gives the
dispersion curves. In order to reduce the computation
time, we have chosen to integrate (11), which can be
written as

% = F(x,y) where x=8H, y =kH and F(x,y)=P/cW.

This first-order differential equation is solved numerically
using a fourth-order Runge-Kutta integration process
with initial condition y(x,)=y, obtained by solving the
dispersion relation for x,=0. The method provides us
with the dispersion curves, stored energy, power flow, and
group velocity. Dispersion curves of a particular shielded
ring line are illustrated in Fig. 2. Limit values, obtained
from the fundamental term of the dispersion relation (10),
are represented in the figure by double arrows. These
values correspond to the nonperiodic theory [4] in which
the ring line is assumed to be an ideal cylinder with
conduction in the ring direction only (space harmonics
neglected). Two types of modes appear: the circular sym-
metry and the hybrid modes.

The circularly symmetric modes comprise: 1) the TE,,
modes, analogous to those of smooth guides of diameter
2g and those of the coaxial guide (a,b) (TE; (a,b) on the
figure) perturbed by the rings; 2) the TM,, modes
(TM,,;, TM, on the figure) of the smooth guide of diame-
ter 2b unperturbed by the rings.

The EH,, hybrid modes (qth mode of n-fold symmetry
in 4 encountered in a scale of increasing frequencies) may
be divided into two groups: 1) the EH,; modes (EH,,,
EH,,, EH,,, EH,, on the figure), the cutoff of which is
TE,, coaxial for any geometrical parameters, can be
termed “fast” (w/8 >c¢) or “slow” (w/ B <c) according to
the frequency; 2) the EH, (¢>1) modes (EH,, EH,;,
EH,,, EH,; on the figure), the cutoff of which is TE or
TM according to the values of the geometrical parame-
ters, are always “fast.” The interchange of cutoff
frequencies of two adjacents EH,,(¢>1) modes are ex-
plained by the coupling between modes of the same 4
symmetry according to Pierce and Tien theory [9]. When
the dispersion curves of two modes EH,,, and EH,_, (¢ >
1) are almost coincident, the characteristic of the Ean
mode is distorted having a minimum beyond cutoff in the
fast-wave domain (for example the EH,, mode on the
figure).

An experimental verification of the dispersion curves
has been made which corroborates the theoretical results

(10)

} +k2a21,:2(ama){ Klant) _ Kaloya) } } ~o.

L(a,b)  I(a,a)
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Fig. 2. Theoretical dispersion curves for the first modes (H=2.5 cm,
2a=5 cm, 2b=10 cm, w=0.5 cm). The double arrows are obtained by

neglecting the guide periodicity.
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Fig. 3. Dispersion curve of the EH;; mode as the period H increases
from 1 10 10 cm with 2b=10 cm, 2a=5 cm, w=0.5 cm.——point
where the dispersion curve cuts the straight v, =c.

{10}. To measure the dispersion curves of the first few
modes, & resonant cavity was formed by placing shorting
end plates at symmetry planes halfway between the rings.
Two teflon supports were holding up the rings. The dis-
crepancy between theoretical and experimental dispersion
curves is less than 1 and 1.5 percent for the EH,, and
EH,; modes, respectively. It can be explained almost
entirely by the spurious effect of the dielectric supports
which tend to lower the resonant frequencies.

Fig. 3 exhibits the very significant role of the guide
period on the dispersion curve. This result shows that the

KH
bsa=10
3 o A
2 4
%/ braz4
A 1 7
pH
Tra ;371’14 o 77?{

Fig. 4. Dispersion curve of the EH,; mode as the ring radius a de-
creases with H=2.5 cm, 2b6=10 cra, w=0.5 cm.

new theory presented here, which takes into account the
guide periodicity, is needded for accuracy. The values of
the period H, the ring radius a, and the shield radius &
influence considerably the dispersion curves of the EH
modes, but the ring width w has little influence: the
passband decreases when the period increases (Fig. 3)
while it extends toward the high frequencies as the ring
radius decreases (Fig. 4) and toward the low frequencies
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Fig. 5. Dispersion curve of the EH,;; mode as the shield radius in-
creases with H=2.5 cm, 2a=2 cm, w=0.5 cm.

as the shield radius increases (Fig. 5). When b tends to
infinity, the shielded ring line tends to coincide with the
open ring line, and the EH,, modes become the same as
those of the open ring line. The fundamental mode of the
shielded ring line is, therefore, a dipolar hybrid mode, as
is the case for the unshielded line.

V. ATTENUATION OF THE FUNDAMENTAL DIPOLAR
Mopk EH,,;

The following relation gives the longitudinal attenua-
tion constant where P, P,, P, are, respectively, the power
flow (9), the ohmic losses per unit axial length on the rings
and on the shield:

P+ P
a=-2—-2868 10° dB/km (12)
2P
with
al? a
P,——2~—RS—}T‘; Ry=Vwu/20

( p: permeability and o: conductivity)

1,(a,,a)

2 2 0
p="LrL S D2
I(a,,b)

H2 b2 m=—oo

This simple expression for P, represents an estimate of
the ohmic losses. It is based on the assumption that the
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Fig. 6. Attenuation variation as the ring radius @ decreases with A=
2.5cem, 2b=10 cm, w=0.5 cm.

current distribution is a constant on both sides of the ring
surfaces. The attenuation of the EH,; mode has been
investigated with the help of the relation (12), and is
determined chiefly by the ratio /4. The period and ring
width have a negligible influence when w/H is small.
When b/a increases, either with b a constant or with @ a
constant, the attenuation becomes smaller and smaller
over a broader and broader frequency band toward high
frequencies (Fig. 6) with b kept a constant or toward low
frequencies (Fig. 7) with a kept a constant. Thus the
greater the distance from the rings to the shield, the
smaller the attenuation of the EH;; mode.

Waveguide attenuations are measured by the cavity
method. The attenuation coefficient is related to the Q
factor Q, due to the shield and ring losses through the
formula: a=w/2v,Q, where v, denotes the group velocity
of mode causing resonance. Q, is deduced from the
measured Q factor of the cavity by eliminating losses on
the end plates of the cavity. It is measured for several
values of cavity length at the same frequency by the
transmission method with negligible coupling.

_ I(a,a) V?
ambI,:(amb)) ’

anan_ ( In(‘xma)

a,%, amaIn(amb)

Fig. 8 shows the theoretical and experimental attenua-
tion of the dipolar mode for an aluminium alloy structure
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Fig. 7. Attenuation variation as the shield radius b increases with
H=25cm,2a=2cm, w=0.5cm.
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Fig. 8. Experimental and theoretical attenuation for the EH,, mode
with H=2.5 cm, 2b=10 cm, 2a=1.3 cm (b/a=0.7), w=0.5 cm, and
ring thickness is 0.05 cm.

(AU4G) with b/a=71.7. The rings are supported by a
2-mm-thick teflon pipe. The experimental curve is slightly
shifted compared to the theoretical curve. This dis-
crepancy may be explained by the effect of the teflon pipe
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that holds the rings and the experimental errors in the
determination of the Q factor. The measured attenuation
is less than 20 dB/km over a bandwidth of 1 GHz, and
would be reduced to about 12 dB/km if the aluminium
alloy were replaced by copper (Fig. 8).

VI

Our theoretical analysis of the shielded ring line was
based on a postulated current distribution on the rings. It
provides detailed knowledge of the properties of that
guiding structure and analytical expressions for the field
and energy relations. We found modes analogous to those
of the disk-loaded waveguide or of the shielded dielectric
line and, in addition, modes similar to those of the coaxial
guide. The latter are circularly symmetric TE,, modes and
hybrid modes with cutoff close to that of TE,, coaxial
modes. EH,,; modes are the only ones that can propagate
as slow waves. The fundamental mode of this periodic
structure is the EH,;, mode, whereas that of the disk-
loaded waveguide is the TM,, mode. These EH,, modes
give those of the open ring line when the shield radius
tends to infinity. If the open ring line operates in this
dipolar hybrid mode as a low-loss line (the attenuation
measured with an aluminum alloy structure being less
than 5 dB/km [1], this property disappears partly when
the line is shielded (about 12 dB/km for a copper struc-
ture).

CONCLUSIONS

APPENDIX A
ZI ad
E = nsin n0m=2_°°2
d D BmJn(unqa/b) r —jB,z
oY Jn(u”qg)e m
ql(u +¢xb) _,_l(u)
H=—-Lacosns 2 2
=T H m=—c0
05l (0,,(a/ b))

7M8

Jn(vnq—lg)e_jﬁmz.

The definition of the Fourier—Bessel and Dini series is
given in [11] and [12]: Fourier—Bessel series

f(y)— 2 an‘]( qy)

1 b(v,fq - n2)(v,:fq + a,f,b2)Jn2(v,,q)

and Dini series

d(y)= Z (0,09)

with

2 [ (1), (tgt)

" Jn2+l(unq) Y
202
2)J2( nq

)f 1d,(0)J,,(v,,?) dt.

M, = (02
na
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APPENDIX B

2 § Jn(unqa)Jn(unqy) _ L
g=1 ur?q(ur?q + au'z)‘]n2+ l(unq) nu‘z
2 J(4,4) _ L(pa)

g=1 (ur%q + MZ)ZJnZ+ l(unq)

207 #

© 2

_ 1
)

= +2 {1,:( pa)l,( pa)

Srtarsa) 40| 1)

y'/2n{a™"=a"} + L(w){ L(pa)K, () /L (w)— K,(pa)}, 0<y<a<l
a"/2n{y " —y"} + L(pa){ L (w)K()/ L, (1) - K,()},  0<a<y<]
T - S K )+ LK)

K, (1)

A ,  0<x<a<l
Z0) (’“’)}

- 2 2 272 n K,
g=1 an n ‘Unq(an"",Un )Jn(vnq) ® a_{xn+x—n}+ In(‘Lx) :I(AU‘) '”Kn(.le) In(ﬂa), 0<a<x<l
2n 1(1)
© o JA(v,a 2\ 172 2
S e ey (o)
g=1 Oy~ 1" (02 +?) J2(0,,) p ) 205 p) wa

- {In(ua)ln’( pa) 11(((5)) - % {L.(pa) K (pa) + I(pa)K,(pa)} }
14-16, 1976.
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A General Reciprocity Theorem

PAUL R. McISAAC, MEMBER, IEEE

Abstract—A general reciprocity theorem based on the Onsager relations
is developed which applies to all causal and linear media, including those
whose ac susceptibilities depend on an applied dc magnetic field and on the
de drift velocity of charge carriers. Applications are made to the scattering
matrix for microwave junctions and to the mode orthogonality relations for
uniform and periodic waveguides.
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1. INTRODUCTION

NE OF THE BASIC theorems of electromagnetic

theory is the reciprocity theorem. There has been a
long history of contributions to its development [1]-[6]. It
is the purpose of this contribution to extend the range of
applicability of the reciprocity theorem and to provide a
physical basis for it through the Onsager relations. The
requirements are only that the media in the region under
consideration be causal and linear; they may be either
passive or active. In particular, media whose ac suscept-
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